Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1094720170220050653
Biotechnology and Bioprocess Engineering
2017 Volume.22 No. 5 p.653 ~ p.658
Anti-inflammatory effect of the ceramide mixture extracted from genetically modified Saccharomyces cerevisiae
Song Myeong-Kwan

Kim Se-Kyung
Yun Hyun-Shik
Kwon Soon-Jo
Abstract
The inflammatory response is an indispensable bodily reaction, but excessive inflammation is known to result in diseases such as atopic disease, bronchitis, rheumatoid arthritis, and inflammatory bowel disease. Ceramide is the basic structure of sphingolipids and ceramides have been industrially used in functional cosmetics as anti-aging agents, as well as for moisturizing skin and calming skin irritation. It also has been recently used in medicinal fields as an anti-inflammatory as well as for atopic and skin wound healing, and for skin barrier restoration. In this study, we used genetically modified Saccharomyces cerevisiae to produce ceramides. Ceramide mixture was produced by gene manipulation that amplifies the original yeast gene. To investigate their anti-inflammatory effects, nitric oxide (NO) concentrations in cell culture supernatant were measured by using the Griess reaction and the expression levels of pro-inflammatory markers, cyclooxygenase-2 (COX-2) and tumor necrosis factor-¥á (TNF-¥á), were determined by using qRT-PCR. When cells were treated with the ceramide mixture, cell viability was not reduced, but NO production was inhibited. In addition, expressions of COX-2 and TNF-¥á were inhibited. Based on these results, we conclude that ceramide biosynthesized from recombinant yeast can effectively reduce the expression of inflammatory enzymes and cytokines. We expected that ceramides biosynthesized in genetically modified yeast is a novel preventive or therapeutic agent for inflammatory diseases without the risk of foreign gene introduction.
KEYWORD
ceramide, nitric oxide, cyclooxygenase-2, tumor necrosis factor alpha, anti-inflammation
FullTexts / Linksout information
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI)